Problem 1.45

Prove that if $\mathbf{v}(t)$ is any vector that depends on time (for example the velocity of a moving particle) but which has constant magnitude, then $\dot{\mathbf{v}}(t)$ is orthogonal to $\mathbf{v}(t)$. Prove the converse that if $\dot{\mathbf{v}}(t)$ is orthogonal to $\mathbf{v}(t)$, then $|\mathbf{v}(t)|$ is constant. [Hint: Consider the derivative of \mathbf{v}^{2}.] This is a very handy result. It explains why, in two-dimensional polars, $d \hat{\mathbf{r}} / d t$ has to be in the direction of $\hat{\phi}$ and vice versa. It also shows that the speed of a charged particle in a magnetic field is constant, since the acceleration is perpendicular to the velocity.

Solution

Suppose there's a time-dependent vector,

$$
\mathbf{v}=\mathbf{v}(t)
$$

which has a constant magnitude,

$$
|\mathbf{v}|=\lambda .
$$

Consider the dot product of \mathbf{v} with itself.

$$
\begin{aligned}
\mathbf{v}^{2} & =\mathbf{v} \cdot \mathbf{v} \\
& =|\mathbf{v}||\mathbf{v}| \cos 0 \\
& =(\lambda)(\lambda)(1) \\
& =\lambda^{2}
\end{aligned}
$$

Take the derivative of both sides with respect to time.

$$
\begin{aligned}
\frac{d}{d t}\left(\lambda^{2}\right) & =\frac{d}{d t} \mathbf{v}^{2} \\
0 & =\frac{d}{d t}(\mathbf{v} \cdot \mathbf{v}) \\
& =\frac{d \mathbf{v}}{d t} \cdot \mathbf{v}+\mathbf{v} \cdot \frac{d \mathbf{v}}{d t} \\
& =\mathbf{v} \cdot \frac{d \mathbf{v}}{d t}+\mathbf{v} \cdot \frac{d \mathbf{v}}{d t} \\
& =2\left(\mathbf{v} \cdot \frac{d \mathbf{v}}{d t}\right)
\end{aligned}
$$

Divide both sides by 2 .

$$
0=\mathbf{v} \cdot \frac{d \mathbf{v}}{d t}
$$

Therefore, \mathbf{v} is orthogonal to $\dot{\mathbf{v}}=d \mathbf{v} / d t$.

Suppose now that there's a time-dependent vector,

$$
\mathbf{v}=\mathbf{v}(t)
$$

such that \mathbf{v} is orthogonal to $\dot{\mathbf{v}}=d \mathbf{v} / d t$.

$$
\mathbf{v} \cdot \frac{d \mathbf{v}}{d t}=0
$$

Multiply both sides by 2 .

$$
\begin{aligned}
0 & =2\left(\mathbf{v} \cdot \frac{d \mathbf{v}}{d t}\right) \\
& =\mathbf{v} \cdot \frac{d \mathbf{v}}{d t}+\mathbf{v} \cdot \frac{d \mathbf{v}}{d t} \\
& =\frac{d \mathbf{v}}{d t} \cdot \mathbf{v}+\mathbf{v} \cdot \frac{d \mathbf{v}}{d t} \\
& =\frac{d}{d t}(\mathbf{v} \cdot \mathbf{v})
\end{aligned}
$$

Integrate both sides with respect to time.

$$
\begin{aligned}
C & =\mathbf{v} \cdot \mathbf{v} \\
& =|\mathbf{v}||\mathbf{v}| \cos 0 \\
& =|\mathbf{v}|^{2}
\end{aligned}
$$

Take the square root of both sides.

$$
|\mathbf{v}|=C^{1 / 2}
$$

Therefore, $|\mathbf{v}|$ is constant.

